
Lighting Controls for Computer
Cinematography

Ronen Barzel
Pixar Animation Studios

PUBLISHED IN: Journal of Graphics Tools2(1), 1997,PP.1–20
http://www.acm.org/jgt/papers/Barzel97

Abstract
Lighting is an essential component of visually rich cinematographic images.

However, the common computer graphics light source models, such as a cone-
shaped spotlight, are not versatile enough for cinematographic-quality lighting.
In this paper we describe the controls and features of a light source model for
lighting computer graphics films. The model is based on generalized light cones,
emphasizing independent control over the shape and texture of lights and shad-
ows. While inspired by techniques of real-world cinematography, it is tailored to
the needs and capabilities of computer graphics. The model has been used suc-
cessfully in production over the past few years, to light many short works and the
movieToy Story.

1 Introduction

Photorealism is an important and much-studied goal in computer graphics imagery
and illumination. But photographers and cinematographers know that when it comes
to lighting, realism is not the only goal.

The purposes of lighting for cinematography are to contribute to the storytelling,
mood, and image composition, and to direct the viewer’s eye. The “practical” light
sources on a real-world movie set, such as desk or ceiling lamps, are rarely major con-
tributors to the illumination. Instead, various types of lamps and spotlights are placed
off-camera, in order to create the desired illumination effect. A lighting designer will
use whatever techniques, tricks, and cheats are necessary, such as: suspending a cloth
in front of a light to soften shadows; positioning opaque cards or graded filters to
shape a light; focusing a narrow “tickler” light to get an extra highlight; or hiding a
light under a desk to fill in dark areas under a character’s chin.

This paper presents a lighting model that has developed over several years in re-
sponse to the needs of computer graphics film production, in particular for makingToy

1

Story. The model gives the CG lighting designer control over the shape, placement,
and texture of lights, so that the designer’s real-world cinematographic talent can be
applied to computer images.

The emphasis of the model is not on realism nor on physically simulating the tools
of real-world cinematography. Rather, we take advantage of various sorts of unreality
available to us in the CG world in order to get the desired cinematographic effects.1

Thus, while real-world effects provide motivation, our lighting model is ultimately
based on effects that are useful in computer graphics.

Note that this paper discusses the technology of cinematography, not the artistry;
the art of cinematography is beyond the scope of this paper (and this author). We refer
interested readers to cinematography texts such as [Lowell92] or [Malkiewicz86]. Of
particular relevance, [Calahan96] discusses the art of cinematography as applied to
computer graphics.

Related Work

[Warn83] developed the cone spotlight model that has since become standard in com-
puter graphics (as well as a simple barn door light), “based in part on observation. . . of
the studio of a professional photographer,” in order to be able to create better-lit images
than were available with then-standard tools. We continue in this vein, extending the
model to meet increasingly ambitious cinematic lighting needs. Doubtless others have
met similar needs, but we are not aware of other published work in this area.

End-user graphics systems typically have fairly powerful lighting tools. For exam-
ple, [Alias95] supports assorted light types, such as spot, point, and volume-restricted.
Our model is more flexible in that any parameter or effect can be used with any shape,
and we place greater emphasis on light textures and manipulation of shadows.

Our model does not include finite-area light sources (see, e.g., [Verbeck,
Greenberg84] or [Cook,Porter,Carpenter84]), and it would likely benefit from them;
however our light-shaping methods can to a large extent fake their soft lighting effects.

Global illumination methods can yield subtly and realistically lit images, but they
typically support limited lighting controls and emphasize light from practical sources.
However, the cinematographic emphasis on off-camera lighting and other trickery
is not incompatible with global illumination methods. For example, [Dorsey,Sillion,
Greenberg91] models opera lighting using off-camera lights and projected images.
[Gershbein,Schröder,Hanrahan94], and [Arvo95] also address textured light sources.
Since our model is implemented via RenderMan shaders [Upstill90], it can in principle
work with a RenderMan-compliant global illumination renderer such as BMRT [Gritz,
Hahn96], although we have not pursued this. Pragmatically, however, global illumi-
nation is still too computationally expensive for regular use in computer graphics film
production.

1In fact, real-world cinematographers would doubtless use CG tricks if they could, e.g., have light em-
anate out of nowhere, cut off a light after a certain distance, or change the direction of shadows.

2

The task of a lighting designer can be aided by tools that speed up the process
of choosing and varying lighting parameters. For example, [Bass81] and [Dorsey,
Arvo,Greenberg95] describe techniques to quickly recompute and redisplay images
as lighting parameters change; [Schoeneman et al.93] and [Kawai,Painter,Cohen93]
determine lighting parameters given user-specified objectives. Tools such as these
could be used in conjunction with our lighting model.

Overview

Sec. 2 describes the controls and features of the lighting model, and Sec. 3 sketches its
implementation. Sec. 4 presents and discusses several sampleToy Storyimages.

We will not discuss the user interface for interactively placing and manipulating
the light sources; it is straightforward but beyond the scope of this paper.

2 The Lighting Model

The lighting model provides control over several aspects of each light source:selec-
tion, shape, shadowing, texture, dropoff, direction,andproperties. We describe and
illustrate these capabilities below. For clarity, each feature is illustrated in isolation,
although the model allows them to be used in any combination. Also, we illustrate
with static images, but all parameters can of course be animated.

Fig. 1 shows a sample scene lit only by fill lights; Fig. 2 shows the same scene with
a simple conical key light. (We use the cinematography termskey lightandfill light for
major and minor sources of illumination, respectively.) Fog is introduced to illustrate
the effect of the light throughout space.2

2.1 Selection

Computer graphics lights can be enabled or disabled on a per-object basis (Fig. 3).
The ability to selectively illuminate objects in a scene is a powerful feature, which
has no analog in real-world lighting. In our experience, per-object selection is used
frequently, in particular to adjust illumination separately for the characters and the set.

2.2 Shape

The basic task of lighting is the placement and shape of light in a scene. Real-
world cinematography commonly uses spotlights and barn door (rectangular) lights
to achieve desired shapes; our model provides a generalization of these.

2The fog is calculated by computing the incident light on hypothetical fog particles along each viewing
ray, and accumulating the total light scattered back to the viewer. The fog has no effect on the light incident
on the objects.

3

Generalized cone/pyramid. The light affects a region whose cross-section is a
superellipse, continuously variable from purely round, through rounded-rectangle, to
pure rectangle (Figs. 4–6). The slope of the pyramid can be varied until at the limit the
sides are parallel. The pyramid may be truncated, as if it were originating from a flat
lamp face, and may be sheared, for window and doorway effects (Fig. 6).

Soft edges.To soften the edge of the light, we define a boundary zone in which
the light intensity drops off gradually. The width and height of the boundary zone
can be adjusted separately. Thus we have two nested pyramids: the light is at full
intensity inside the inner pyramid, and has no effect—i.e., 0 intensity—outside the
outer pyramid, with a smooth falloff between them (see Figs. 7,8 and appendix A).

Cuton and cutoff. The light shape can further be modified by specifying near and
far truncation, again with adjustable-width smooth dropoff zones (Figs. 9,10). These
have no real-world physical analog, but are very useful to soften a lighting setup, and
to keep the light from spilling onto undesired parts of the scene.

Being able to adjust the shape and edge dropoff of lights easily allows for soft
lighting of a scene, faking area-light penumbra effects.3 In our experience, the majority
of lights are chosen to be mostly rectangular, with large edge zones to provide smooth
gradation of lighting; conical lights are used mostly if the scene includes a practical
source, such as a flashlight.

The light shape can of course be rigidly rotated, scaled, and placed anywhere in
space. This is a strength of CG lighting over real-world lights: we are not encumbered
by physical structures and mechanisms that must be hidden or placed off-camera; CG
lights can emanate spontaneously anywhere in space, giving the lighting designer great
freedom.

Finally, another choice for the shape is to have no shape at all: the light affects all
of space.

2.3 Shadowing

Shadows and shadow placement are an important part of cinematography. Computer
graphics has great freedom to control shadows for artistic effect. In the following
discussion, it is convenient to think of shadow projection as defining a “volume of
darkness” inside of which illumination is inhibited; this volume can be manipulated as
an independent entity.

Shadow selection.A light doesn’t necessarily have to cast shadows.4 In Fig. 11,
the key light casts shadows, but the background fill lights do not. Shadows may also
be disabled on a per-object basis, as in Fig. 12. Thus a difficult problem in real-world
cinematography, suppressing unwanted shadows, is trivial in computer graphics.

3The lack of actual area lights in the model can manifest itself, however, in the shapes of shadows and
surface highlights.

4For most rendering algorithms it is of course cheaper and easiernot to cast shadows.

4

Shadow direction. The direction that shadows are cast doesn’t necessarily have
to follow the light—each “volume of darkness” can be aimed as needed. For example,
the light in Fig. 13 is the same as in Fig. 11, but the shadows have been shifted so that
the torus casts a shadow on the cylinder. It is perhaps surprising just how far shadow
directions can be shifted from true without incurring visual dissonance. “Cheating”
the shadow directions can be a powerful tool for controlling image composition; in our
experience, background shadows are often “cheated.”

Shadow sharing.A seemingly bizarre capability is for a light to share its shadows
with other lights (Fig. 14). That is, a “volume of darkness” defined by a given light
and object can inhibit illumination from other lights as well. This allows the lighting
designer to strengthen shadows that might otherwise be washed out by nearby lights.
In our experience shadows are often shared.

Fake shadows. It is often useful to create extra shadows, to imply nonexistent
offscreen objects or simply to darken a scene where needed. In real-world lighting,
opaque cards can be placed in front of a light. In our model,blockerscan similarly be
defined; each is specified by a 2D superellipse that can be placed anywhere in space
(Fig. 15). As with ordinary shadows, the direction that the blocker casts its shadows
can be adjusted, and a blocker can be shared among several lights. In our experience,
blockers are heavily used, sometimes several per light.

Shape trimming. A blocker can be made large and placed so as to trim the shape
of a light, as in Fig. 16. Animating a large blocker can be an easy way to fake a
door-opening-offscreen effect.

Shadow softening.To keep shadows from being too harsh, any shadow or blocker
can be made translucent, to only partially inhibit illumination. Shadow edges can be
softened as well: for blockers, this is done via an edge-zone dropoff in the same manner
as the light shape; for object shadows, the boundary of the “volume of darkness” is
blurred. Finally, rather than going to black, a shadow can be assigned a color; subtle
use of colored shadows can add richness to an image.

2.4 Texture

Just as images are used in computer graphics to create texture on surfaces, they can be
used to create texture in lights via projection.

Cookie. A single-channel matte image can be used as a “cookie cutter,”5 to get
cross-sectional shapes other than the built-in superellipses (Fig. 17), or, more subtly,
to fake complex shadows from offscreen objects (Fig. 18).

Slide. A full-color image yields a slide-projector effect (Fig. 20). An unfocused
projection (such as from a television set) can be achieved by applying a blur filter
whose width increases as the projection distance increases.

5“Cookie” is colloquial for “cucaloris,” the technical term for an opaque card with cutouts, used to block
a light.

5

Noise. In addition to stored image files, the light can be projected through a 2D
noise function that modifies the intensity or color, yielding “dirty” lights.

As with shadows and blockers, it is possible to “cheat” the origin and direction of
an image projection, to blur it, and to adjust its intensity.

2.5 Dropoff

The intensity of the light can vary, in the familiar manner of computer graphics light-
ing:

Beam distribution. Fig. 21 illustrates dropoff of intensity across the beam using
the usual exponentiated cosine function; however, the angle is normalized so that the
intensity attenuates to 0 at the edge of the beam.

Distance falloff. Fig. 22 illustrates dropoff of intensity with distance from the
light source location, using the usual inverse-power attenuation; to keep the intensity
well-defined at the light origin we provide a smooth clamp to a maximum intensity
(see appendix B).

In our experience, choosing exponential dropoff parameters is not visually intu-
itive; it is often easier to have noa priori dropoff, and to gradate lighting by using soft
shape, cutoff, and blocker edges.

2.6 Direction

The light ray direction has the two options common in computer graphics (Fig. 23):
Radial. The rays emanate from a point at the apex of the pyramid.
Parallel. The rays are parallel to the centerline of the light pyramid, as per a very

distant light.
Fig. 23 illustrates parallel and radial rays in a light pyramid. The combination of

parallel rays with widening shape yields a non-physical, but still useful effect: light
rays are created along the edges of the shape. One can also imagine circumstances
in which it would be useful to “cheat” the ray direction in other ways, e.g. to have
rays parallel to a direction other than the pyramid centerline, or to define an arbitrary
curvilinear vector field for the ray direction, but we have not needed such cheats in our
standard model.

Note that by choosing a single well-defined light direction, we are implicitly as-
suming a point source or infinitely-distant source. To support finite-area lights, a mech-
anism such as ray distribution ([Cook,Porter,Carpenter84], [Veach,Guibas95]) would
be need to be introduced to the model.

2.7 Properties

The previous sections have discussed where and in what direction the light reaches the
surfaces in the scene. Finally, we have the properties of the “photons” that are incident

6

on the surfaces:
Intensity. The nominal intensity of the light is specified at its origin or at a target

point within the shape. This value is attenuated by the shape boundary, shadows,
cookies, noise, and dropoff.

Color. The color of the light is expressed as a standard 3-channel RGB value,
which can be filtered by a slide, noise, or colored shadow.

Effect. The three standard CG illumination effects are available: ambient flat light-
ing, diffuse shape lighting, and specular highlighting. They may be used in combina-
tion, with a scale factor for each. (For ambient lighting, the ray direction is of course
irrelevant.) In practice, diffuse-only lights are usually used for soft fills (Fig. 1), while
key lights use both diffuse and specular effects. A small ambient component to a light
is useful to keep regions from going completely black.

Other information. Depending on what can be supported by the surface-shading
model, additional information can be carried to surfaces. For example: a fourth chan-
nel of color can contain “ultraviolet” that a “fluorescent” surface will react to by self-
illuminating; or we may have an identifier for each light source so that surfaces can
react differently to specific lights.

3 Implementation

The lighting model is implemented as a RenderMan light source shader [Upstill90].
The programmability of shaders has been invaluable in developing and extending the
model.

Following the RenderMan paradigm, a light source is considered to be a functional
unit: given a point on a surface anywhere in space, a light source computes the direc-
tion and color of the “photons” incident on that point due to that source. Fig. 24 gives
an overview of the computation. The actual RenderMan code is somewhat messier,
however, in particular because RenderMan does not support arrays; there are a max-
imum number of shadowmaps, blockers, and so forth, and eachforeach in Fig. 24 is
actually a series of tests against each parameter.

For efficiency, if any features aren’t used, we skip the corresponding steps of the
computation. Also, if at any step the attenuation factor becomes 0, the remainder of
the steps can be skipped. Finally, we use a mechanism that generates special-purpose
shaders based on the chosen parameters, analogous to but simpler than the method of
[Guenter,Knoblock,Ruf95].

Fig. 24 uses shadowmaps for shadow generation ([Williams78], [Reeves,Salesin,
Cook87]), as this is the mechanism supported by our renderer. With shadowmaps, the
shadow trickery of Sec. 2.3 is straightforward: objects can be selectively included in
shadowmaps; shadow directions can be cheated by adjusting the shadow camera before
computing the map; and shadows can be shared by referencing the same shadowmap
file in several lights. For other shadowing algorithms, these tricks may need to be

7

coded into the renderer.

4 Results

Plates 1 through 6 show severalToy Storyframes. We discuss some illustrative features
of the lighting in each.

Plate 1is a simple scene that illustrates the significance of light shape and place-
ment for image composition: the character is framed by a rectangular profile of a barn
door light. The light nominally shines through a window offscreen to the right, but
the placement was chosen for visual effect, not necessarily consistent with the relative
geometries of the window, the sun, and the bed. Notice also the soft (partial-opacity)
shadows of the bed on the wall.

Plate 2has stripes of light on the characters, that are not shadows of the venetian
blind slats, but are generated using a cookie that is adjusted for dramatic effect; The
slats are lit from below by a separate light, in order to obtain the desired highlighting.

Plate 3also uses a cookie (the same one used in Figs. 18,19) to generate a dappled
leaf effect. A separate cone-shaped light, with its own cookie, spotlights the area
around the soldier crouching in the rear. The characters in the foreground are lit with
an additional, blue light acting only on them for the blue highlights. This scene also
includes a practical light, the red LED, which is used for effect but not as a key source
of illumination.

Plate 4features a practical light source, the flashlight, also using a cookie for the
lens ring effect. The flashlight actually includes two light sources, one that illuminates
the character and one used only for a fog calculation; the latter has a cutoff so that the
fog doesn’t obscure the character. This scene also features an “ultraviolet” light (as
described in Sec. 2.7), responsible for the blue glow of the white shirt.

Plate 5illustrates the importance of shadow placement—the shadows of the milk
crate were carefully adjusted so that an “X” would fall on the character’s face without
obscuring the eyes or mouth, since the character is speaking. Blockers were also used
to darken the background, both to darken the mood and to accentuate the character’s
face in the foreground.

Plate 6contains a variety of techniques: the key light has soft edges; the character’s
shadow direction is cheated for compositional effect; a light at a grazing angle from the
left illuminates only the desktop, to accentuate its texture; separate lights illuminate
only the character to provide extra highlighting; and a cookie is animated from one
frame to the next, to provide a falling-rain effect.

5 Conclusion

The lighting model we describe provides a convenient and powerful encapsulation of
control for cinematography. It has been developed in response to needs and requests of

8

lighting designers doing computer graphics film production: the features that we have
described are those that have proven useful in practice, and almost all lighting effects
used inToy Storywere achieved with the available features.

Our lighting model is a straightforward collection and extension of common com-
puter graphics methods. It (or a variation) is perhaps a candidate for inclusion in
standard graphics libraries. We would be particularly interested in seeing support for
controllable light shape and texture in rendering hardware, in order to be able to inter-
actively create cinematographically-lit images.

An intriguing question is to what extent lighting models such as ours—practical
but non-physical—can be incorporated into physically-based global-illumination ren-
dering schemes. The combination of controlled lighting and sophisticated rendering
has potential for creating images of a quality as yet unseen.

Acknowledgements

This lighting model is an extension of earlier work by Yael Milo and others. The
blockers are are based on work of Larry Aupperle and Oren Jacob. The fog effect is
based on work of Mitch Prater. This model would not have been developed without
feedback and use by theToy Storylighting team. Kurt Fleischer, Sharon Calahan, and
Uriel Barzel provided valuable suggestions for this paper.

9

References
[Alias95] Alias |Wavefront, a division of Silicon Graphics Canada Limited, Toronto, 1995.

[Arvo95] James Arvo. Applications of irradiance tensors to the simulation of non-Lambertian phenomena.
In Computer Graphicsproceedings, Annual Conference Series, ACM SIGGRAPH, 1995, pp. 335–
342.

[Bass81] Daniel H. Bass. Using the video lookup table for reflectivity calculations: specific techniques
and graphics results.Computer Graphics and Image Processing,Vol. 17, 1981, pp. 249–261.

[Calahan96] Sharon Calahan. Storytelling through lighting: a computer graphics perspective. SIGGRAPH
course notes, 1996.

[Cook,Porter,Carpenter84] Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed ray trac-
ing. Computer Graphics,18(3) (Proc. SIGGRAPH), July 1984, pp. 137–145.

[Dorsey,Arvo,Greenberg95] Julie Dorsey, James Arvo, and Donald Greenberg. Interactive design of
complex time-dependent images.IEEE Computer Graphics and Applications,15(2), March 1995,
pp. 26–36.

[Dorsey,Sillion,Greenberg91] Julie O’B. Dorsey, François X. Sillion, and Donald P. Greenberg. De-
sign and simulation of opera lighting and projection effects.Computer Graphics25(4) (Proc. SIG-
GRAPH), July 1991, pp. 41–50.

[Gershbein,Schröder,Hanrahan94] Reid Gershbein, Peter Schrod̈er, and Pat Hanrahan. Textures and ra-
diosity: controlling emission and reflection with texture maps. InComputer GraphicsProceedings,
Annual Conference Series, ACM SIGGRAPH, 1994, pp. 51–58.

[Gritz,Hahn96] Larry Gritz and James K. Hahn. A global illumination of the RenderMan standard. Sub-
mitted toJournal of Graphics Tools,1996.

[Guenter,Knoblock,Ruf95] Brian Guenter, Todd B. Knoblock, and Erik Ruf. Specializing shaders. In
Computer GraphicsProceedings, Annual Conference Series, ACM SIGGRAPH, 1995, pp. 343–
350.

[Kawai,Painter,Cohen93] John K. Kawai, James S. Painter, and Michael F. Cohen. Radioptimization—
goal based rendering. InComputer GraphicsProceedings, Annual Conference Series, ACM SIG-
GRAPH, 1993, pp. 147–154.

[Lowell92] Ross Lowell.Matters of Light & Depth.Broad Street Books, 1992.

[Malkiewicz86] Kris Malkiewicz. Film Lighting.Prentice Hall Press, 1992.

[Reeves,Salesin,Cook87] William T. Reeves, David H. Salesin, and Robert L. Cook. Rendering an-
tialiased shadows with depth maps.Computer Graphics21(4) (proc. SIGGRAPH), July 1987,
pp. 283–291.

[Schoeneman et al.93] Chris Schoeneman, Julie Dorsey, Brian Smits, James Arvo, and Donald Green-
berg. Painting with light. InComputer GraphicsProceedings, Annual Conference Series, ACM
SIGGRAPH, 1993, pp. 143–146.

[Upstill90] Steve Upstill.The RenderMan Companion.Addison-Wesley, Reading, MA, 1990.

[Veach,Guibas95] Eric Veach and Leonidas J. Guibas. Optimally combining sampling techniques for
Monte Carlo rendering. InComputer GraphicsProceedings, Annual Conference Series, ACM SIG-
GRAPH, 1995, pp. 419–428.

[Verbeck,Greenberg84] Channing P. Verbeck and Donald P. Greenberg. A comprehensive light-source
description for computer graphics.IEEE Computer Graphics and Applications4(7), July 1984,
pp. 66–75.

[Warn83] David R. Warn. Lighting controls for synthetic images.Computer Graphics17(3) (Proc. SIG-
GRAPH), July 1983, pp. 13–21.

[Williams78] Lance Williams. Casting curved shadows on curved surfaces.Computer Graphics12(3)
(Proc. SIGGRAPH), August 1978, pp. 270–274.

10

Appendices

A Superellipses

A superellipse is a figure that varies between an ellipse and (in the limit) a rectangle,
given by:

(
x

a
)

2
d + (

y

b
)

2
d = 1

wherea andb are thex andy radii, andd is a “roundness” parameter varying the shape
from pure ellipse whend = 1 to a pure rectangle asd → 0 (Fig. 4).

R

Q

a

b

A

B

P

We want to soft-clip a pointP to a shape specified by two nested superellipses, having
radii a, b andA,B. That is, givenP , compute a clip factor of 1 if it is within the
inner superellipse and 0 if it is outside the outer superellipse, varying smoothly value
in between. We assume that the 3-space point has been projected into the first quadrant
of the canonical plane of the ellipse.

We express the ray throughP asP(s) = sP , and intersect it with the inner su-
perellipse atQ, and with the outer atR. To find the pointsP , Q, andR, we express
them as:

P = P(p), Q = P(q), R = P(r).

Trivially, p ≡ 1. To computeq, we derive:

(qPx

a)
2
d + (qPy

b)
2
d = 1

q
2
d ((Px

a)(2
d + Py

b)
2
d) = 1
q

2
d = ((Px

a)(2
d + Py

b)
2
d)−1

q = ((Px

a)
2
d + (Py

b)
2
d)−

d
2

= ab((bPx)
2
d + (aPy)

2
d)−

d
2

and similarlyr = AB((BPx)
2
d + (APy)

2
d)−

d
2 . The final clip factor is given by

1− smoothstep (q, r, p), where RenderMan’ssmoothstep [Upstill90] computes:

smoothstep (q, r, p) =





0, p < q
Hermite
interpolation,

q ≤ p ≤ r

1, p > r

11

For a pure rectangle,d = 0, we simply composex andy clipping to compute a
clip factor:

(1− smoothstep (a, A, Px)) ∗ (1− smoothstep (b,B, Py))

This gives a different falloff at the corners than the limit of the round calculation, but
suits our purposes.

Other falloff functions than the Hermitiansmoothstep could be useful in some
circumstances, but we have not experimented with any. It could also be useful to
support asymmetric edge widths; but we have not as yet done so.

B Intensity falloff curve

The common inverse power formula for light intensity can be expressed as

I(d) = K

(
L

d

)α

whered is distance from the light source,α is attenuation exponent, andK is the
desired intensity at a canonical distanceL. This expression grows without bound asd
decreases to 0 (solid line):

dL

I

M

K

A common solution is to clamp the intensity to a maximum value; however this yields
a curve with discontinuous derivative, potentially causing Mach banding. Instead, we
use a Gaussian-like curve (dashed line) when inside the canonical distance:

I(d) =

{
Mes(d

L)
β

, d < L

K(L
d)

α
, d > L

wheres ≡ ln(K
M) andβ ≡ −α

s are chosen so that the two curves have matching value
I(d) = K and slopeI ′(d) = −Kα

L at distanced = L.

12

Figure 1: Cylinder and cube on the floor, torus in
midair.

Figure 2:Same as Fig. 1, with a conical key light.

Figure 3:Selection. Same as Fig. 2, but the torus is
unaffected by the key light.

Figure 4:Shape. A superellipse profile is swept into
a pyramid, which may be truncated or sheared.

Figure 5:Rounded rectangle shape, as in Fig. 4b.

Figure 6:A sheared barn door light, as in Fig. 4d.

Figure 7: Same as Fig. 5, but with soft edges
(Fig. 8).

Figure 8:Nested pyramids define the soft edges in
Fig. 7.

13

Figure 9:same as Fig. 2, but with a sharp cutoff.

Figure 10:Same as Fig. 2, but with a gradual cuton.

Figure 11:Basic shadows. Same as Fig. 2, but with
shadows from the key light.

Figure 12:Shadow selection. Same as Fig. 11, but
the cube casts no shadow.

Figure 13:Cheated shadows. All light parameters
are the same as in Fig. 11, but the shadow directions
have been cheated so that the torus slightly shadows
the cylinder.

Figure 14:Shared shadows. Same as Fig. 11, but
the key light shares its shadows with the fill lights.

Figure 15:Faked shadow. Same as Fig. 2, but with
a blocker that casts a shadow.

14

Figure 16:Shape trimming. Same as Fig. 2, but a
large blocker has been placed just in front of the rear
wall, to eliminate unwanted illumination of the wall.

Figure 17: Projecting a matte image as a “cookie
cutter” to get alternate light shapes (Fig. 19).

Figure 18: Projecting a matte image to get
simulated shadows, here for a dappled-leaf effect
(Fig. 19).

Figure 19: The matte images used in Fig. 17
and Fig. 18.

Figure 20: Projecting a color image (the well-
known mandrill) to get a slide effect.

Figure 21:Intensity distribution across beam.

Figure 22:Intensity falloff with distance.

Figure 23:Cross section of light shape, with radial
and parallel light rays.

15

GIVEN: POINT P ON SURFACE

COMPUTE: COLOR AND DIRECTION OF INCIDENT RAY

Each light is defined in local coordinates such that the pyramid is along thez axis with its apex
at the origin, simplifying clipping and falloff calculations.

Pl = transformP to light’s coords
atten = 1.0
// Clip to near/far planes
atten *= step(znear-nearedge, znear, zcomp(Pl))
atten *= step(zfar, zfar+faredge, zcomp(Pl))
// Clip to shape boundary
atten *= clipSuperellipse(Pl) // see appendix A
// Apply blockers
foreach blocker

Pb = projectP into plane of blocker
atten *= clipSuperellipse(Pb)

end
// Apply cookies
foreach cookie

Pm = projectP into plane of cookie
atten *= texture(cookie.filename, Pm)

end
// Apply slide filters
foreach slide

Ps = projectP into plane of slide
color *= texture(slide.filename, Pm)

end
// Apply noise
foreach noise texture

Ps = projectP into noise space
atten or color *= noise(Ps)

end
// Apply shadows
foreach referenced shadowmap

Ps = projectP into plane of shadow
atten or color *= test if in shadow

end
// Intensity dropoff
atten *= Falloff(zcomp(Pl))
atten *= BeamDistribution(Pl)
// Final output
output(color) = intensity*color*atten
output(rayDirection) = P (radial) or z (parallel)

Figure 24: Overview of light computation.

16

Plate 1

Plate 2

17

Plate 3

Plate 4

18

Plate 5

Plate 6

19

