
Interactive Pen-and-Ink Illustration

Michael P. Salisbury Sean E. Anderson Ronen Barzel� David H. Salesin

Department of Computer Science and Engineering
University of Washington
Seattle, Washington 98195

�Pixar
1001 West Cutting Blvd

Richmond, California 94804

Abstract

We present an interactive system for creating pen-and-ink illustra-
tions. The system usesstroke textures—collections of strokes ar-
ranged in different patterns—to generate texture and tone. The user
“paints” with a desired stroke texture to achieve a desired tone, and
the computer draws all of the individual strokes.

The system includes support for using scanned or rendered images
for reference to provide the user with guides for outline and tone.
By following these guides closely, the illustration system can be
used for interactive digital halftoning, in which stroke textures are
applied to convey details that would otherwise be lost in this black-
and-white medium.

By removing the burden of placing individual strokes from the user,
the illustration system makes it possible to create fine stroke work
with a purely mouse-based interface. Thus, this approach holds
promise for bringing high-quality black-and-white illustration to the
world of personal computing and desktop publishing.

CR Categories and Subject Descriptors:I.3.2 [Computer Graph-
ics]: Picture/Image Generation - Display algorithms; I.3.6 [Com-
puter Graphics]: Methodology and Techniques - Interaction tech-
niques; I.4.3 [Image Processing]: Enhancement.

Additional Key Words: Comprehensible rendering, non-photorea-
listic rendering, prioritized stroke textures.

1 Introduction

Pen-and-ink is an extremely limited medium, allowing only individ-
ual monochromatic strokes of the pen. However, despite the limita-
tions of the medium, beautiful pen-and-ink illustrations incorporat-
ing a wealth of textures, tones, and styles can be created by skilled
artists. Indeed, partly because of their simplicity and economy, pen-
and-ink illustrations are widely used in textbooks, repair manuals,
advertising, and many other forms of printed media.

Part of the appeal and utility of pen-and-ink illustrations is that they
can be easily printed alongside text, using the same ink on the same
paper, without any degradation. For the same reasons, pen-and-ink-
style illustrations could also be useful in the domain of desktop pub-
lishing and laser printers—especially if the illustrations were gen-
erated and manipulated directly on a computer.

While the problem of painting full-color images on a computer has
received considerable attention in the computer graphics commu-
nity, the requirements of an interactive pen-and-ink-style illustra-
tion system are different enough to merit special study. Pen-and-ink
illustrations have two major properties that distinguish them from
other art media:

1. Every stroke contributes both tone (darkness) and texture.Since
tone and texture are not independent parameters, the pen artist
must take care to convey both of these qualities simultaneously.

2. Strokes work collectively.In general, no single stroke is of critical
importance; instead, strokes work together to express tone and
texture.

This paper describes an interactive pen-and-ink-style illustration
system. The overall goal of the system is to enable a user to easily
generate effective and attractive illustrations directly on a computer.
In this work, we are not concerned with creating purely computer-
generated images; rather, the computer is utilized as a tool to en-
hance the speed and ease with which a user can create illustrations.

The interactive illustration system allows a variety of texturing in
order to achieve the same range of style and expressive ability that
is possible with a physical pen and ink. We do not want to limit the
user to any specific algorithmic “look.”

The system places a particular emphasis on using continuous-tone
images as a reference for the user, and thus provides a form of “in-
teractive digital halftoning” in which the user can introduce texture
as an integral part of the resulting illustration. In this sense, the vi-
sual artifacts that are necessarily produced in quantizing a greyscale
image can be given an artistic or expressive nature. Also, of practi-
cal significance, photocopying does not degrade pen-and-ink-style
images to the same extent as conventionally-halftoned images.

1.1 Background: Pen-and-ink illustration

We give here a brief description of some of the salient features
and terminology of hand-drawn pen illustration, relevant to the de-
sign of an interactive system. For further discussion and instruc-
tion, interested readers should consult Guptill [6], a comprehen-
sive text on pen and ink illustration. In addition, Simmons [16]
provides instruction on illustrating using a “technical pen,” which
draws strokes of constant width. Both books contain dozens of stun-
ning examples. A discussion of pen-and-ink principles as they relate
to purely computer-generated imagery can be found in Winkenbach
et al. [20].

Because texture in an illustration is the collective result of many pen
strokes, each individual stroke is not critical and need not be drawn
precisely. Indeed, a certain amount of irregularity in each stroke is

desirable to keep the resulting texture from appearing too rigid or
mechanical.

The most commonly used textures include:hatching, formed by
roughly parallel lines;cross-hatching, formed by overlapped hatch-
ing in several directions; andstippling, formed by small dots or very
short lines. Textures can also be wavy, scribbly, or geometric and
can appear hard or soft, mechanical or organic.

The perceived grey level ortonein an illustration depends largely on
how dense the strokes are in a region (just like the dots in a dithered
halftone image). Although grey-level ramps can be achieved by ju-
diciously increasing stroke density, fine-art illustrations typically
emphasize contrast between adjacent regions, and often employ a
very limited number of distinct grey levels.

Shapes in an illustration can be defined byoutline strokes. These
strokes are exceptional in that they may be long and individually
significant. Often the outline is left implicit by a change in tone
or texture. The choice of whether or not to use outlines is largely
an aesthetic one, made by the artist, and used to achieve a particu-
lar effect. For example, explicit outlines are typically used for hard
surfaces, while implied outlines generally convey a softer or more
organic object.

Producing fine-art-quality, hand-drawn pen-and-ink illustrations re-
quires a great deal of creativity and artistic ability. In addition, it
requires a great deal of technical skill and patience. A real pen and
ink have no undo!

1.2 Related work

Most of the published work on “digital painting” is concerned with
the problem of emulating traditional artists’ tools. Only a few of
these works take an approach similar to ours of creating higher-level
interactive tools that can produce the same results as their prede-
cessors: Lewis [10] describes brushes that lay down textured paint;
Haeberli [7] shows how scanned or rendered image information can
be used as a starting point for “painting by numbers;” and Haeberli
and Segal [8] use hardware texture-mapping for painting and also
mention 3D halftoning effects.

Considerable work has also been done for creating black-and-
white illustrations, generally for engineering or graphical design
work. The earliest such system was Sutherland’s “Sketchpad” [18].
Gangnet et al. [5] use planar decomposition to manipulate and clip
geometric objects. Pavlidis [11] provides a method for “cleaning up”
schematic drawings by removing hand-drawn irregularities. Quite
the opposite (and more along the lines of our work), the Premisys
Corporation markets a commercial product, “Squiggle,” [13] that
adds waviness and irregularities to CAD output to augment lines
with extra information and to make the results appear more hand-
drawn. Saito and Takahashi [14] produce automated black-and-
white illustrations of 3D objects.

Our research group is exploring several different aspects of the pen-
and-ink illustration problem. This paper discusses the issues of in-
teractively creating pen-and-ink illustrations, with an emphasis on
using 2D greyscale images as a starting point. A second paper shows
how principles of illustration can be incorporated into an automated
system for rendering 3D models [20]. A third paper examines the
issues involved in representing, editing, and rendering the individ-
ual strokes that are the building blocks of any line illustration sys-
tem [4].

Figure 1:A closeup view of several individual pen strokes, with var-
ious amounts of curve and waviness.

1.3 Overview

The next section discusses the overall design of our system, as well
as its individual capabilities and features. Section 3 presents some
example illustrations and describes our experience with using the
system. Section 4 suggests directions for future research. The pri-
mary data structures and algorithms of our prototype implementa-
tion are outlined in appendix A.

2 The Illustration System

Full-color paint systems often support direct simulations of tradi-
tional artist tools, such as brushes and paint [3, 17]. However, for
our application, there is little purpose in providing the user with a
simulated “ink pen” to draw the pen strokes, for several reasons:

� A mouse-based interface does not support the fine control needed
for detailed stroke work.

� The strokes of an illustration are not of great individual impor-
tance.

� Drawing individual strokes is tedious, and we would like our sys-
tem to reduce much of that tedium.

Thus, rather than focus on the individual strokes, the system tries to
directly support the higher-level cumulative effect that the strokes
can achieve: texture, tone, and shape. The user “paints” using tex-
tures and tones, and the computer draws the individual strokes.

The illustration system cannot completely ignore individual strokes,
however. Outlines are the most notable example of strokes that have
individual significance; in addition, an artist might occasionally
need to touch up fine details of textured work. Therefore, the system
also allows users to draw individual strokes and provides controls
for modifying stroke character through smoothing and through the
substitution of various stroke styles [4].

To further aid users in creating illustrations, the system allows
scanned, rendered, or painted images to be used as a reference for
tone and shape. The system also supports edge extraction from im-
ages, which is useful for outlining. Finally, a range of editing ca-
pabilities is supported so that users are free to experiment or make
mistakes.

The following sections discuss the capabilities and workings of the
system in greater detail.

2.1 Strokes

It is important that the strokes automatically generated by the sys-
tem be irregular. Uneven strokes make an illustration look softer,
more natural, and hand-drawn, whereas regular strokes introduce
mechanical-looking texture. The use of irregular strokes can be
compared to the introduction of randomness in image dithering [19].

Figure 2:Assorted stored stroke textures.

Figure 3:A single texture drawn with several tone values.

We cannot simply draw strokes in completely random directions,
however—the stroke direction is one of the key elements in defin-
ing a texture. Instead, the system perturbs the strokes in a variety of
small ways (see Figure 1): strokes can be drawn with a slight wig-
gle (a wave with slightly randomized frequency and phase); straight
strokes can be given a slight overall curvature; and stroke length and
direction can be jiggled slightly. Section A.3 describes the stroke-
drawing algorithm in greater detail. Currently, strokes in our system
are each of constant width, as per a “technical pen” [16].

2.2 Textures

The user paints by rubbing a “brush” over the illustration; the strokes
that appear in the region under the brush are generated based on
a user-selectedstroke texture(see Figure 2). The system supports
a library of user-definedstoredstroke textures, as well as several
built-in proceduralstroke textures. In this way, a wide variety of il-
lustration styles can be achieved. These two types of stroke textures
are described in more detail below.

Stored stroke textures

A stored texture is simply a collection of strokes. Drawing a texture
at a given darkness is a matter of choosing from the collection a sub-
set that has enough strokes to reach the desired tone. (Some textures
may be inherently too light—they may not have enough strokes to
make dark tones.)

For textures such as stipples and scribbles, the choice of strokes to
draw for a given tonality is not critical. In these cases, the system
simply selects strokes from the texture in a random sequence, gen-
erating candidate strokes and testing the tonal effect of candidate
strokes as described in Section A.3. Candidate strokes that pass the
tests are drawn, and those that fail are discarded (see Figure 3).

For other textures, however, the system supports a predefinedpri-
ority for each stroke, which specifies an order to use in generating
and testing candidate strokes. For example, Figure 4 illustrates a
texture in which only horizontal hatches are drawn for light tones,

Figure 4:A prioritized texture. Only the most significant strokes are
drawn for light tone values; less important strokes are brought in to
darken the texture.

while cross-hatching strokes are used for darker tones. Another ex-
ample would be a texture in which larger scribbles are drawn before
smaller ones.

Creating a good prioritized stroke texture is not always easy—some
design iteration may be required before the strokes and their prior-
ities work well together. Once a texture has been created and per-
fected, however, it can be archived for repeated use. The system lets
the user draw textures interactively and can also support textures
that are computed programmatically or that are taken from edges
extracted from scanned images.

Procedural stroke textures

Many interesting texture effects can be computed procedurally. The
system currently supports three types of procedural texturing: stip-
pling (randomly distributed points or short strokes), parallel hatch-
ing, and curved strokes. The latter two textures can follow along or
against the gradient of a reference image. Since these are the only
textures truly built into the system, they are the basic building blocks
from which user-drawn stored textures are formed.

To draw procedural stroke textures, the system simply generates ap-
propriate candidate strokes under the region of the brush and tests
them, as discussed in detail in Section A.3. More intricate priori-
tized procedural stroke textures, such as “brick,” “wood,” or “shin-
gle” textures, can also be defined [20], although they are not cur-
rently implemented in our interactive system.

2.3 Reference images

A scanned, rendered, or digitally painted continuous-tone image can
be underlaid “beneath” the illustration being drawn, and displayed
faintly. This reference image can be used in several ways (see Fig-
ure 5):

Figure 5:Using a grey scale image for reference. Left to right: Orig-
inal grey scale image; extracted edges; curved hatching across the
gradient.

� As a visual reference for the artist.

� As a tone reference for painting, in which case the texture dark-
ness will match that of the image.

� As a source image from which edges are extracted to use for out-
lining and clipping. The user can select edges corresponding to
versions of the image at various resolutions.

� As a progenitor ofstencils. The user can interactively define sten-
cils by specifying ranges of intensities in the reference image;
strokes are drawn only where the reference image value is within
the specified ranges.

� As a reference for determining stroke and texture orientation.
Textures that follow the reference gradient can be particularly
useful for conveying curved surfaces.

Note that its extensive support for reference images makes the il-
lustration system a particularly effective tool for interactive digital
halftoning. However, it does not provide automatic halftoning—it
is up to the user to choose which stroke textures to apply, where to
apply them, and how dark to make them, based on the user’s intent
and aesthetic sense for the final illustration. One could imagine an
automated system to extract texture from an image, but there is not
always enough information in the image to achieve the desired ef-
fect. For example, the original reference photograph for the goose
in Figure 9 does not show feathers in any great detail; the artist must
choose textures and introduce tone variation to convey the sense of
feathering.

2.4 Detail manipulation

The illustration system supports multiresolution curves [4], allow-
ing users to add or remove detail from strokes and edges. For ex-
ample, an illustration can be initially made using smooth strokes,
which can later be adjusted in subtle or not so subtle ways, using a
variety of wiggly or scribbly detail. Alternatively, detail can be re-
moved from an edge extracted from the tone reference in order to
yield smoother outlines (see Figure 6).

2.5 Clipping

The user can specify outlines, which may or may not be drawn in
the final illustration, but against which strokes (and stroke textures)
are clipped. Outlines can be drawn by hand or can be taken from
edges in reference images.

Just as individual strokes should not be too regular, the clipped ends
of textures should in general be slightly ragged. The system intro-
duces a small amount of random variation by clipping strokes too
soon or allowing them to spill beyond the edge of the clipping region
(see Figure 7).

Figure 6:Manipulating curve detail. Left to right: Teapot edges from
Figure 5, with detail removed; alternate details applied to the curves.

Figure 7:Strokes clipped to an outline. Left: The outline is drawn.
Center: The outline has been removed; notice the hard edge caused
by exact clipping. Right: A small amount of random sloppiness cre-
ates a softer edge.

2.6 Individual strokes

Sometimes individual strokes are important enough to be drawn by
hand; for example, the hairs in Figure 11 were individually created.
The user can draw individual strokes with a mouse or with a tablet.
These strokes can be given waviness and clipped in the same man-
ner as automatically-generated strokes. To overcome the mouse’s
lack of smoothness, unwanted detail can be removed via the mul-
tiresolution curve mechanism, or prestored “artistic” irregularities
can be introduced, as described in Section 2.4.

2.7 Editing collections of strokes

In addition to modifying individual strokes, the user can edit collec-
tions of strokes. Editing operations can be applied to all strokes, to
those generated from a given texture, or to strokes selected interac-
tively.

Perhaps the most interesting editing operation is the “lighten” op-
eration. Rather than simply erasing all strokes under the brush,
“lighten” incrementally removes strokes. Thus, a textured region
that is too dark can be made lighter without destroying the integrity
of the texture, instilling pen-and-ink with qualities of a subtractive
medium. For example, in the lower left-hand drawing of Figure 8,
the mottled effect in the background was created by painting a cross-
hatch texture to a uniform darkness, then slightly lightening in a few
places with touches of the brush.

3 Results

The pen-and-ink illustration system is implemented in C++ and runs
at interactive speed on an SGI Indigo2 workstation, without any ad-
ditional hardware assistance. The system has proven quite success-
ful at assisting users in easily producing a variety of illustrations.
All figures in this paper were drawn using the illustration system;
only a few minutes were required for the simplest figures, and a few
hours were required for the goose in Figure 9. All figures were out-

Figure 8:A single scene, drawn in a variety of styles. Pitz [12] suggests drawing this scene with varying styles, as an exercise for student
illustrators. The three drawings on top and left are attempts to closely follow examples given in the book, while the lower right is our own
stylistic expression. The illustrations were created using an image of a simple 3D model as a tone reference.

put in PostScript by our system and printed with the text on a GCC
SelectPress 1200dpi printer.

To test the range and quality of the system, we chose to tackle exer-
cises and mimic drawings from illustration texts. Figures 8, 9 and 10
show some of the results. We must admit that the target pen-and-ink
drawings in the textbooks are generally finer than ours. However,
when we consider that our illustrations were made on a bitmap dis-
play, using only a mouse, by programmers who are not trained il-
lustrators, and in a matter of minutes for the simpler drawings, we
find our results very encouraging.

4 Future work

The illustration system we have built suggests a number of areas for
future research:

� Experimenting with better interaction techniques.The control
panel of our prototype system has a button or slider for nearly ev-
ery low-level operation and parameter in the program and hence
is somewhat cumbersome to use. A better interface would pro-
vide support for common illustrator techniques, such as haloed
outlines and stippled edges. In addition, we would like to explore
adding much higher-level controls for producing illustrations, in-
cluding commands to “increase contrast” or “focus attention” on
certain regions of the illustration.

� More sophisticated strokes and stroke textures.Our simple pro-
cedural and stored textures do not yet provide all of the subtlety
and variety available to the pen. For example, we would like to
include the ability to vary the thickness along a stroke, which is
supported in other pen-and-ink work [4, 20].

� Resolution-independence.The user should be able to work at a
convenient screen resolution, while the final output should have
strokes drawn with the highest resolution the printer can support.
However, changing resolution in a naive fashion may change the
appearance of strokes and stroke textures in undesirable ways.
We would like to explore methods of storing illustrations not as
collections of strokes, but as higher-level descriptions of tone,
texture, and clipping information that could be used to generate
the image appropriately at any arbitrary resolution.

� Combining with 3D.We would like to interface our interactive
system with an automatic renderer for creating pen-and-ink illus-
trations from 3D models [20] to create an integrated interactive
2D and 3D illustration system.

Acknowledgements

We would like to thank Adam Finkelstein for helping us incorporate
his stroke detail research into our editor, and Georges Winkenbach
and Tony DeRose for their useful discussion of illustration princi-
ples. We would also like to thank SGI for loaning us several ma-
chines in order to meet our deadlines.

This work was supported by an NSF National Young Investigator
award (CCR-9357790), by the University of Washington Graduate
Research and Royalty Research Funds (75-1721 and 65-9731), and
by industrial gifts from Adobe, Aldus, and Xerox.

References

[1] Brian Cabral and Leith (Casey) Leedom. Imaging Vector Fields Using
Line Integral Convolution. Proceedings of SIGGRAPH 93 (Anaheim,

Figure 9:A Canada goose. Simmons [16] uses the goose as a worked example of tight technical pen drawing from a reference photograph; we
attempted to mimic the author’s final result with our system, using only a mouse. The book includes a reproduction of the author’s own reference
photograph, which we scanned to use as a tone reference.

California, August 1–6, 1993). InComputer Graphics, Annual Con-
ference Series, 1993, pages 263–272.

[2] John Canny. A Computational Approach To Edge Detection. In Ran-
gachar Kasturi and Ramesh C. Jain, editors,Computer Vision: Prin-
ciples, pages 112–131. IEEE Computer Society Press, Los Alamitos,
California, 1991. Reprinted fromIEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 8(6):679–698, November 1986.

[3] Tunde Cockshott, John Patterson, and David England. Modelling the
Texture of Paint. InProceedings of EUROGRAPHICS ’92, pages C–
217 to C–226, September 1992.

[4] Adam Finkelstein and David H. Salesin. Multiresolution Curves. Pro-
ceedings of SIGGRAPH 94 (Orlando, Florida, July 24–29, 1994). In
Computer Graphics, Annual Conference Series, 1994.

[5] Michel Gangnet, Jean-Claude Herve, Thierry Pudet, and Jean-
Manuel Van Thong. Incremental Computation of Planar Maps. Pro-
ceedings of SIGGRAPH ’89 (Boston, Massachusetts, July 31–August
4, 1989). InComputer Graphics23, 3 (August 1989), pages 345–354.

[6] Arthur L. Guptill. Rendering in Pen and Ink. Watson-Guptill Publica-
tions, New York, 1976.

[7] Paul Haeberli. Paint by Numbers: Abstract Image Representations.
Proceedings of SIGGRAPH ’90 (Dallas, Texas, August 6–10, 1990).
In Computer Graphics24, 4 (August 1990), pages 207–214.

[8] Paul Haeberli and Mark Segal. Texture Mapping as a Fundamen-
tal Drawing Primitive. InProceedings of the Fourth Annual EURO-
GRAPHICS Workshop on Rendering, pages 259–266, Paris, June 1993.
Ecole Normale Superieure.

[9] Douglas Kirkland.Icons. Collins Publishers San Francisco, San Fran-
cisco, California, 1993.

[10] John-Peter Lewis. Texture Synthesis for Digital Painting. Proceedings
of SIGGRAPH ’84 (Minneapolis, Minnesota, July 23–27, 1984). In
Computer Graphics18, 3 (July 1984), pages 245–252.

[11] Theo Pavlidis. An Automatic Beautifier for Drawings and Illustrations.
Proceedings of SIGGRAPH ’85 (San Francisco, California, July 22–
26, 1985). InComputer Graphics19, 3 (July 1985), pages 225–230.

[12] Henry C. Pitz.Ink Drawing Techniques. Watson-Guptill Publications,
New York, 1957.

[13] The Premisys Corporation, Chicago.Squiggle, 1993.

[14] Takafumi Saito and Tokiichiro Takahashi. Comprehensible Rendering
of 3D Shapes. Proceedings of SIGGRAPH ’90 (Dallas, Texas, August
6–10, 1990). InComputer Graphics24, 4 (August 1990), pages 197–
206.

[15] Robert Sedgewick.Algorithms. Addison-Wesley Publishing Com-
pany, Reading, Massachusetts, 1983.

[16] Gary Simmons.The Technical Pen. Watson-Guptill Publications, New
York, 1992.

[17] Steve Strassman. Hairy Brushes. Proceedings of SIGGRAPH ’86
(Dallas, Texas, August 18–22, 1986). InComputer Graphics20, 4 (Au-
gust 1986), pages 225–232.

[18] Ivan E. Sutherland. Sketchpad: A Man-Machine Graphics Communi-
cation System. InProceedings of the Spring Joint Computer Confer-
ence, pages 329–346, 1963.

[19] Robert Ulichney. Digital Halftoning. The MIT Press, Cambridge,
1987.

[20] Georges Winkenbach and David H. Salesin. Computer-Generated Pen-
and-Ink Illustration. Proceedings of SIGGRAPH 94 (Orlando, Florida,
July 24–29, 1994). InComputer Graphics, Annual Conference Series,
1994.

A Implementation details

This appendix outlines the implementation of our prototype pen-and-ink il-
lustration system. We will focus on the most significant features: the data
structures allowing quick updating and editing of the illustration, and the
stroke generation and testing algorithms.

Section A.1 describes the data types used in the system. Section A.2 presents
the global data items maintained. The process of generating and using
strokes is discussed in Section A.3.

Figure 10:Close-up of the goose head.

A.1 Data Types

The two basic data structures used by the illustration system are thestroke
and thestroke database.

Stroke

The data type at the heart of the system is theStroke. Each stroke includes
the following fields:

� pixels: An arbitrary-size array of(x,y)pixel coordinate pairs.

� length: The size of thepixels array.

� width: The width of the stroke, in pixels.

� bbox: The rectangular bounding box of the stroke’s pixels.

� id: The texture from which the stroke was derived.

� priority: The ranking of a stroke, if in a prioritized texture.

The entries of thepixels array contiguously trace the path of the stroke:
x andy never change by more than�1 from one entry to the next.

The operations supported by theStroke type include: testing to see if a
stroke intersects a given rectangular region, circular region, or other stroke;
decreasinglength by trimming entries off the ends ofpixels; merging two
contiguous strokes into a single stroke; and returning the point in the stroke
that is closest to a given pixel.

A stroke can be manipulated as a multiresolution curve [4]. Each entry in
pixels is used as a control point of an interpolating spline, which is subject
to multiresolution analysis and can have its detail edited or replaced. The
resulting curve is scan-converted to recover the contiguouspixels entries
required by theStroke type.

Stroke database

A stroke database maintains a collection ofStroke instances, supporting
addition and deletion of strokes, and various queries. It is important that
the database operations and queries be quick enough to allow painting and
editing at interactive speed.

We implement the stroke database using a modified k-D tree (see
Sedgewick [15]). Each node of the tree corresponds to a region of the image;
the children of the node partition that region. The partition is always hori-
zontal or vertical and is chosen so as to distribute as evenly as possible the
strokes of a region between the two children. Each leaf node contains a list of
the strokes that intersect its region. For performance purposes, a limit of 10
strokes per leaf and a minimum size of5� 5 pixels per leaf are maintained
(with the area restriction having precedence).

In the modified k-D tree, a given stroke may be referenced by several leaves
since a stroke can cross partitions of the tree. The structure allows us to
quickly find all strokes that may overlap a specified region by the usual re-
cursion along the limbs of the tree that include the region. Minor extra book-
keeping is required when iterating through the strokes in the leaves to ensure
that a stroke is not visited multiple times.

The queries supported by a stroke database include: finding all strokes within
a given rectangular or circular region; finding all strokes that overlap a given
stroke; and finding the stroke nearest a given pixel. Each query may spec-
ify criteria such as a particularid value. These queries allow the system to
perform operations such as deleting a stroke and updating the screen as fol-
lows: first, find the stroke nearest the cursor; next, delete the stroke from the
database and erase it from the screen; finally, find all strokes that overlap the
deleted stroke and redraw them.

A.2 Global data objects

The system maintains several global data objects to support the interactive
illustration processes:

� Main stroke database and image bitmap.The illustration is maintained
in a dual representation: a stroke database maintains the collection of
Stroke instances that make up the illustration; and an image bitmap al-
lows the system to quickly determine if a pixel has been drawn by one or
more strokes. When storing to disk, only the stroke database needs to be
saved; the image bitmap can be recreated by traversing the database and
drawing all the strokes.

� Clip-edge database and clip-edge bitmap.To allow fast clipping of drawn
strokes to outline edges, the system maintains a global bitmap into which
all clipping edges are drawn (clipping is discussed in Section A.3). The
clip edges can come from edge detection of the reference image or from
freehand drawing. To allow the user to activate and deactivate edges, the
edges are stored asStroke instances in a stroke database.

� Stored stroke textures.The system loads stored stroke textures on de-
mand from a library on disk. A stored texture is defined as a rectangular
region with toroidal wrap-around, so that the texture can seamlessly tile
the illustration plane. Each texture is maintained in the system as a stroke
database. For a prioritized texture, each stroke has an associated priority
value. The stroke database of a stored stroke texture is queried but is not
modified when the texture is used.

� Reference image.The system stores the reference image in memory, al-
lowing quick pixel-by-pixel tone reference and stenciling. Unlike the im-
age bitmap of the illustration, the reference image is an 8-bit greyscale.
When a reference image is loaded from disk, the detected edges in the im-
age are added to a clip-edge database and bitmap. We use a Canny edge
extractor [2] to detect edges at several image resolutions. This potentially
time-consuming processing is only done the first time a given reference
image is used; the resulting edges are saved on disk along with the image,
so that they can be loaded quickly in the future.

A.3 Drawing strokes

The process to “paint” with strokes is similar for the supported procedural
textures—stippling, straight hatching, and curved hatching—and for stored
stroke textures. The following pseudocode outlines this process:

Paint:

for each brush positionP
while S GenerateCandidateStroke(P)

ClipStroke(S)

if TestStrokeTone(S) then
DrawStroke(S)

end if
end while

end for

The steps of this process are described below.

☞ GenerateCandidateStroke(P): At each brush positionP , the system
may in general try to draw many strokes. Each invocation ofGenerate-

CandidateStroke returns the next stroke instance from a set of candidates.
The next stroke returned may be generated dynamically based on the success
of the previous strokes. The generation of candidate strokes depends on the
texture:

� Stippling.There is only a single candidate: a stipple dot at a random lo-
cation under the brush (chosen with uniform distribution in the brush’s
polar coordinates). The stipple dot is generated as a length 1 stroke.

� Straight hatching.The system tries a sequence of line segments with de-
creasing length, until a segment is drawn or a minimum length is reached.
The midpoint of each stroke is a random location under the brush, and the
direction and initial length are specified by the user. The direction may be
fixed or aligned relative to the gradient of the reference image. The user
may request a small randomization of the direction and length. The user
may also specify that only full-length strokes be used, in which case if
the initial candidate is not drawn, no further strokes are attempted. Each
candidate stroke is a perturbed line segment, generated by the following
pseudocode:

PerturbedLineSegment(x1; y1; x2; y2; a; !; c):

; (x1; y1) and(x2; y2) are the endpoints of the line segment.
; a is the magnitude and! the base frequency of waviness.
; c is the magnitude of curviness.
; random() value has uniform distribution on[0; 1].
; gaussian() value has normal distribution on[�1; 1].
dx x2 � x1
dy y2 � y1

s

p
dx2 + dy2

� 2�! (1 +
1

4
gaussian())

 1

2
�gaussian()

i 0; j 0; � 2�random()

for � 0 to 1 step 1=max(jdxj; jdyj)

; perturb line with sine waviness and quarter-wave curve.
b asin(�)=s+ c (cos(�

2
�� �

4
)� 1)

pixels[i] (x1 + �dx+ b dy; y1 + �dy + b dx)

; occasionally shift the sine wave frequency.
if j� > �

2
and gaussian() > 1

3
then

 1

2
�gaussian()

j 0

end if
; update for next pixel.
� �+ � +

i++; j++

end for

When needed, intermediate pixels are inserted in order to maintain the
contiguity requirement of theStrokes type.

� Curved hatching.Similar to straight hatching, the system tries strokes
of decreasing length until one is accepted. The user specifies the initial
length and direction relative to the reference image gradient. A curved
stroke is generated by following the image gradient as a vector field
(much as was done by Cabral and Leedom [1]) forward and backward
for the given length.

� Stored Strokes.The system queries the texture’s database for a list of
strokes that lie under the brush, modulo tiling of the image plane with
the texture. The strokes of the resulting list are tried in priority order for
prioritized textures, or random order for non-prioritized textures. A pri-
oritized texture may be flagged asstrictly prioritized, in which case if a
candidate stroke fails the tone test, the remaining lower-priority strokes
are not considered. Each candidate stroke is generated by translating the
stored stroke’spixels to the proper tile in the image. Our system does not
currently add any randomness to the strokes beyond that which was used
when the texture was originally defined. Tiling artifacts are typically not
objectionable if the illustration feature size is smaller than the tile size,
but could be alleviated through random stroke perturbations.

☞ ClipStroke(S): The candidate strokeS is subjected to a series of clipping
operations:

1. To the bounds of the overall image.

2. To the brush.Clip the strokes to the brush for stored stroke textures to
give the user a traditional “textured paint.” This clipping step is not per-
formed for procedural textures; in this case, the candidate strokes are
generated starting under the brush but may extend beyond its bounds.

3. To clip-edges.Trace from the center of the stroke out to each end, exam-
ining the corresponding pixels of the global clip-edge bitmap, stopping
when an edge is met.

4. To a reference-image stencil.Trace from the center of the stroke out to
each end, examining the corresponding pixels of the reference image.
Can stop at black, white, or any of a number of user-defined ranges of
image intensities.

The clipping operations return a “first” and a “last” index into the stroke’s
pixels array, but before actually trimming the stroke, these indices are per-
turbed up or down by a small random amount to achieve ragged clipping as
described in Section 2.5. The magnitude of the perturbation is adjustable by
the user. If the stroke is clipped to zero length, it can be trivially rejected at
this point.

☞ TestStrokeTone(S): Two tests are performed to see how strokeS affects
the image. First, the stroke’s pixels in the image buffer are tested: if all the
pixels are already drawn, the stroke has no effect on the image and is trivially
rejected. Next, the effect of the stroke on the image tone is determined: the
stroke is temporarily drawn into the image bitmap and the resulting tone is
computed pixel-by-pixel along its length, by low-pass filtering each pixel’s
neighborhood. Depending on the user’s specification, the desired tone may
be determined from the reference image’s value (via similar low-pass filter-
ing along the stroke), or may simply be a constant value. The stroke fails
if it makes the image tone darker than the desired tone anywhere along its
length.

☞ DrawStroke(S): To draw strokeS, its pixels in the image bitmap are set,
the display is updated, and an instance ofS is added to the main stroke
database. For stored stroke textures, the system checks to see if the new
strokeS overlays an existing instance of the same stroke—such an occur-
rence could happen, for example, if the earlier stroke was clipped to the brush
and the user has now moved the brush slightly. Rather than adding the new
stroke, the previously-drawn stroke is extended to include the new stroke’s
pixels in order to avoid overwhelming the data structures. Note that for a new
instance of a stroke to align with a previous instance, any extra randomness
should be exactly repeatable; the values for the stroke perturbations should
be derived from a pseudorandom function over the illustration plane.

Figure 11:An illustrated portrait. The reference image was a photo-
graph by Douglas Kirkland [9].

